If it's not what You are looking for type in the equation solver your own equation and let us solve it.
=Y^2+4Y-150
We move all terms to the left:
-(Y^2+4Y-150)=0
We get rid of parentheses
-Y^2-4Y+150=0
We add all the numbers together, and all the variables
-1Y^2-4Y+150=0
a = -1; b = -4; c = +150;
Δ = b2-4ac
Δ = -42-4·(-1)·150
Δ = 616
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{616}=\sqrt{4*154}=\sqrt{4}*\sqrt{154}=2\sqrt{154}$$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-2\sqrt{154}}{2*-1}=\frac{4-2\sqrt{154}}{-2} $$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+2\sqrt{154}}{2*-1}=\frac{4+2\sqrt{154}}{-2} $
| –4x+3=8x–21 | | (n+24)/3=n | | 17-29x=158 | | 30*x=48*90 | | 30/48=40/x | | 30*132=48*y | | 2x^2+20x-8400=0 | | 2x^2+20x+8400=0 | | n-24=n/3 | | 5r/6=7/6 | | x-0.18x=255.56 | | x-0.18x=315.32 | | x-0.18x=280.06 | | .5(y–2)=35 | | x-0.18x=211.96 | | p=10000*(1+0.05)4 | | 12x2+14x+12=18 | | 4t^2+36=24t | | 4x^+19x+17=0 | | 5x-35+60=0 | | 4x-x=400 | | x+(.12*x)=200000 | | 3b^2-2b-1=0 | | x-0.12x=200000 | | 10=1/(0.92+(0.08/x)) | | 3x+0.9(3x)=1 | | 3-n=18 | | 10t^2-20t=45 | | 1,331x3−216=0 | | (-13)-n=13 | | x-258/120=0.85 | | 5p+p=320 |